New varieties have been developed to enhance yield and quality attributes

Harvest, a labor-intensive practice, clearly represents the lion’s share of total costs, at 58% in organic production, 60% in conventional production and 67% in second year conventional berries. Cultural costs represent 26% of total costs in the conventional and organic systems, but only 15% for second year strawberries because there were no associated planting costs, and because pest management costs were lower . Looking more closely at pest management, soil fumigation is the highest cost category for conventional production at $3,302 per acre, with weed control, another labor-intensive practice, the highest cost in second year and organic strawberries at $1,212 and $2,506 per acre, respectively . However, for organic strawberries the cost to control insects ran a close second at $2,488 per acre, which was dominated by control for lygus bug with a bug vacuum, and two-spotted spider mite with the release of predatory mites. By comparison, container vertical farming estimated costs for insect control in conventional strawberries were lower at $702 per acre and still lower at $579 in second year conventional berries.

Raspberry and blackberry production were not routinely studied in years prior to 2003. Since then, several primocane-bearing raspberry and floricane-bearing blackberry cost and return analyses have been performed, with the most recent studies conducted in 2012 and 2013, respectively. Both studies detail establishment and first year production and harvest costs for not-yet-fully-mature crops. For raspberries, first year of production includes a $12,460 per acre construction, management and investment cost for protective tunnels. Costs for a mature raspberry crop are analyzed in the second production year and total $48,210 per acre . For blackberries, costs for a mature crop are shown for the second through fifth production years, and total $43,406 per acre per year. Harvest costs again represent the vast majority of total costs, at 81% and 71% of total costs for raspberries and blackberries, respectively. For raspberries, cultural costs represented a much smaller share of total costs at $4,656 per acre, roughly half of which was for trellis and tunnel management. Blackberry cultural costs totaled $5,709 per acre, of which over half was for pruning and training canes.Each study also includes an analysis of potential net returns to growers above operating, cash and total costs for a range of yields and prices. When evaluating net returns above total costs, gains are shown for higher yield and price points; losses are also documented at many lower yields and prices .

Farms with productive soils, experienced managers, optimal production conditions and robust market plans generally realize higher net returns. In contrast, farms with less-than-optimal production conditions, reduced yields, poor fruit quality or inexperienced managers may contribute to lower net returns. Results from the strawberry analyses show that on a per acre basis, organic strawberries tend to be more profitable than conventional berries, even with lower yields. Organic price premiums explain the result; in this example price per tray for organic strawberries ranged from $12 to $18, while price per tray for conventional berries ranged from $7.30 to $11.30. Prices for second year conventional strawberries were slightly lower still to account for a portion of the crop that was diverted to the freezer market. Net returns for both caneberries were mostly positive. Other noteworthy entries in all recent berry studies include per acre costs for pest control advisers , management of invasive pests and food safety and regulatory programs for water and air quality. Though each alone represents a relatively small portion of total costs, they provide readers with insights into the changing nature of berry production activities and costs over time.Cultural practices in the berry industry have evolved to address changes in soil, water and pest management needs. Based on historical trends, and to meet both industry needs and consumer demands, we expect to see new varieties continually developed over time. Businesses have responded to consumer and market demands for fresh, safe and organic products by implementing food safety programs and/or transitioning more lands to organic production. Water and air quality programs have been developed to comply with state regulatory requirements. In the past, growers customarily hired those with expertise in financial and market management; they now also enlist the support of experts in food safety, organic agriculture and environmental quality to assist with farm management. But challenges remain, and management of key agricultural risks — including those for production, finances, marketing, legal and human resources — have become increasingly important. Invasive pests pose significant management and regulatory constraints and increase production, financial and market risks. Two recent examples are light brown apple moth and spotted wing drosophila .

LBAM infestations can lead to loss of part or all of the crop because of field closure from regulatory actions, increasing production and financial risk. SWD presents substantial market risk to growers in that its larvae can infest fruit and render the crop unsaleable. Growers minimize the risk of loss from these two organisms with the routine use of PCAs. PCAs monitor fields more frequently than growers alone would be able to do, identify pests and recommend actions, for example, the use of pheromone mating disruption for LBAM and field sanitation for SWD. Since their introduction, the soil fumigants CP and MB have unquestionably contributed to the expansion of the berry industry. However, the full phaseout of MB as a pest management tool — it will no longer be available for use in berry production after 2016 — presents both production and financial risks. While a substantial research commitment has been made to finding alternatives to MB, nothing has yet come close to offering the same level of protection from the large-scale loss to soil pathogens or the gains in productivity associated with the application of CP and MB as synergistic preplant fumigants. We anticipate that the berry industry will adapt to the MB phaseout by using alternative fumigants and preplant soil treatments, but these are likely to carry a higher level of risk for berry production in the short term and may lead to a decrease in planted acreage and production. However, this may also stimulate an even more robust research agenda directed towards soil borne diseases and plant health to minimize disruption to the industry. Reliance on fumigants as the primary strategy for pest management is almost certainly a thing of the past. Instead, adoption of integrated approaches, including alternatives to fumigants, to manage diseases, weeds and other pests will be key to sustaining berry production over the longer term . Labor is also a current and significant challenge for growers of berry crops. Social and demographic changes in Mexico — the source of a majority of the area’s agricultural labor — have resulted in markedly lower immigration rates into the United States, a shrinking labor pool and upward competition and wage pressures for the agricultural workers who remain . In recent years, hydroponic vertical garden growers have reported difficulty in securing and retaining sufficient numbers of workers to ensure timely and effective farm operations. The lower production figures seen in strawberries in 2014 may in part have been the result of an insufficient labor pool from which to draw . However, no known regional employment or wage data are available to specifically document this. Some growers minimize labor risk by paying higher wages and providing year-round employment when possible. However, these strategies can be difficult for some businesses to justify economically. Arguably, the area’s berry industry, and agriculture more generally, increasingly face political risk. Immigration legislation that may assist with the current labor challenge languishes at the federal level, with major policy changes unlikely before 2017 . Farming practices are under ever more scrutiny by consumers, local municipalities and state and federal agencies. Soil fumigants and pesticide use have been the focus of many intense debates and discussions, especially in Santa Cruz and Monterey counties. At the time of this writing, several new regulations related to pesticide application notifications, pesticide and fumigant application buffer zones and worker safety have been proposed by the California Department of Pesticide Regulation or the U.S. Environmental Protection Agency but have not yet been finalized. It is anticipated that implementation will begin in 2017, with full compliance required in 2018. And, as California struggles through a fifth year of drought, water use, quality and cost has become a more robust part of the local, state and federal discourse, with directives issued and new legislation proposed. Compliance with each new directive or regulation presents production and logistical challenges for growers and can be costly to manage.

Although it is unlikely that regulatory pressures will lessen in the future, there is every expectation that growers will continue to adjust business practices to meet or exceed any new requirements or standards. The economic sustainability of individual farming operations and the area’s berry industry in total will ultimately be impacted by and continue to evolve with the ever changing business environment, and by an array of risks and challenges.Angle-resolved photo emission spectroscopy is used to directly measure the band structure of solids and is an essential experimental tool for solid state physics research. In addition to the band structure, ARPES provides information on other aspects of the electronic structure. For example, ARPES with a spin detector can be used to obtain spin information of the initial states . Polarization dependent experiments can provide symmetry information on the initial states; initial states from, for example, px and py orbitals can show dramatically different ARPES intensities depending on the polarization of the incident light. In recent years, there has been much interest in using circular dichroism in ARPES as a way to measure some aspects of initial states, such as the orbital angular momentum or the Berry curvature. It is well understood that OAM plays an important role in spin-split phenomena in systems without inversion symmetry, such as surfaces of solids and monolayer transition metal dichalcogenides. CD-ARPES has been utilized to obtain the crucial information on the electronic structures of such systems. While the final state of the photo emission process certainly has an effect on the CD-ARPES intensities, experimental results show that CD-ARPES is a rough measure of the OAM of the initial state if the photon energy is not too low. Exploiting this feature in CD-ARPES measurements, information on the OAM and hidden Berry curvature of 2H-WSe2 was recently obtained using CD-ARPES. An important aspect of this research was that the Berry curvature contribution to the CD-ARPES intensity could be isolated by decomposing the CD-ARPES intensity map into symmetric and antisymmetric components about the experimental mirror plane, which is perpendicular with respect to the crystal mirror plane of 2H-WSe2. Te symmetric component was attributed to the OAM or Berry curvature contribution, since the electronic structure should be symmetric about the chosen experimental mirror plane set along K–Ŵ–K′ in momentum space.Experimental geometry, including single crystal orientation, is especially important in this experiment. The crystal structure of the top atomic layer or ML of 2H-WSe2 is a hexagonal lattice, as shown in Fig. 1a; there is a unique mirror plane in the crystal structure, as indicated in the figure. Te experimental mirror plane is defined by the plane defined by the normal of the sample surface and the direction of incident light. The experimental mirror plane was set to be the same as the crystal mirror plane. Two experimental geometries are possible, according to the direction of incident light, as indicated by blue and red arrows in Fig. 1a. The experimental geometries using incident light described by blue and red arrows are regarded as geometry-A and geometry-B for convention, respectively. Notably, the signals from the top layer of bulk 2H-WSe2 dominate the CD-ARPES data due to the surface sensitivity of ARPES; the corresponding momentum space view is shown in Fig. 1b. The mirror plane is oriented along the M–Ŵ–M direction, and the direction of incident light is indicated by blue and red arrows on the mirror plane in Fig. 1b. This experimental geometry differs from that used in previous work, in which the experimental mirror plane was rotated by 30° with respect to the crystal mirror plane, such that the experimental mirror plane is oriented along the K–Ŵ–K′ direction. We expanded on our previous CD-ARPES work on 2H-WSe2 by focusing on a different mirror plane. Here, we report our CD-ARPES studies on 2H-WSe2 with the experimental mirror plane parallel to the crystal mirror plane or along the M–Ŵ–M direction in momentum space .