Some studies have shown that the effects of consuming whole foods are more beneficial than consuming compounds isolated from the food, such as dietary supplements and nutraceuticals. Because fruit consumption is mainly related to visual appearance, flavor and antioxidant properties, we decided to evaluate fruit quality attributes, antioxidant capacity and consumer acceptance of the early-season blueberry cultivars currently being grown in California. We characterized the quality parameters of six southern high bush blueberry cultivars grown in the San Joaquin Valley for three seasons , and evaluated their acceptance by consumers who eat fresh blueberries.For the quality evaluations at UC Kearney Agricultural Center, we used three patented southern high bush blueberry cultivars — ‘Emerald’ , ‘Jewel’ and ‘Star’ , and three non-patented cultivars — ‘Reveille’, ‘O’Neal’ and ‘Misty’. The plants were started from tissue culture and then grown for two seasons by Fall Creek Farm and Nursery in Lowell, Ore. Before planting these cultivars in 2001, the trial plot was fumigated to kill nut grass . Because blueberries require acidic conditions, the plot’s soil was acidified with sulfuric acid,30 litre plant pots which was incorporated to a depth of 10 to 12 inches with flood irrigation, resulting in a pH ranging from 5.0 to 5.5.
The plants were mulched with 4 to 6 inches of pine mulch and irrigated with two drip lines on the surface of the mulch, one on each side of the plant row. Irrigation frequency was two to three times per week in the spring and daily during June and July. The emitter spacing was 18 inches , with each delivering 0.53 gallon per hour of water acidified with urea sulfuric acid fertilizer to a pH of 5.0. The plot received an application of nitrogen in the first season, as well as in subsequent growing seasons. The rate was 80 pounds nitrogen per acre at planting, 60 pounds the second year, 90 pounds the third year and 120 pounds the fourth year. Annual pest control was limited to one application of Pristine fungicide in February for botrytis management, and two or three herbicide treatments of paraquat . In year three, the plants received one insecticide treatement of spinosad for thrips management. Twenty-eight plants per cultivar were planted in a randomized block design using seven plants per block as an experimental unit, replicated in four rows. Rows were spaced 11 feet apart, with the plants in the rows spaced 3 feet apart, with a space of 4 feet between plots. Fruit was harvested at times when it would have been commercially viable if it had been in a commercial field. Fruit from each of the seven plant blocks was harvested and a composite sample of 80 random berries per each replication was used for quality evaluations.Berries were randomly selected from each replication for quality evaluation at the first harvest time for each respective season .
During the 2007 season, in addition to the initial quality evaluations, harvested berries were stored at 32°F in plastic clam shells, and measured for firmness 15 days after harvest and for antioxidant capacity 5, 10 and 15 days after harvest. Three replications per cultivar were measured for each quality parameter. The initial firmness of 10 individual berries per replication was measured with a Fruit Texture Analyzer . Each berry was compressed on the cheek with a 1-inch flat tip at a speed of 0.2 inch per second to a depth of 0.16 inch and the maximum value of force was expressed in pounds force . Sixty berries per replication were then wrapped together in two layers of cheesecloth and squeezed with a hand press to obtain a composite juice sample. The juice was used to determine soluble solids concentration with a temperature-compensated handheld refractometer and expressed as a percentage. Twenty-one hundredths of an ounce of the same juice sample was used to determine titratable acidity with an automatic titrator and reported as a percentage of citric acid. Some samples that had a high viscosity were centrifuged with a superspeed centri-fuge at 15,000 rpm for 5 minutes, in order to get liquid juice for soluble solids concentration and titratable acidity measurements . The ratio of soluble solids concentration to titratable acidity was calculated.Antioxidant capacity was measured in the 2005 and 2007 seasons. Eighteen hundredths of an ounce of berries per replication was used to determine the level of antioxidants by the DPPH free-radical method . Samples were extracted in methanol to assure a good phenolic representation, homogenized using a polytron and centrifuged for 25 minutes.
The supernatant was analyzed against the standard, Trolox, a water-soluble vitamin E analogue, and reported in micromoles Trolox equivalents per gram of fresh tissue .An in-store consumer test was conducted on ‘Jewel’, ‘O’Neal’ and ‘Star’ blueberry cultivars in 2006, and on the six blueberry cultivars studied in 2007, using methods described previously . The fruit samples were held for 2 days after harvest at 32°F prior to tasting. One hundred consumers who eat fresh blueberries, representing a diverse combination of ages, ethnic groups and genders, were surveyed in a major supermarket in Fresno County. Each consumer was presented with a sample of each blueberry cultivar in random order at room temperature, 68°F . A sample consisted of three fresh whole blueberries presented in a 1-ounce soufflé cup labeled with a three-digit code. At the supermarket, the samples were prepared in the produce room out of sight from the testing area. For each sample, the consumer was asked to taste it, and then asked to indicate which statement best described how they felt about the sample on a 9-point hedonic scale . Consumers were instructed to sip bottled water between samples to cleanse their palates. Consumer acceptance was measured as both degree of liking and percentage acceptance, which was calculated as the number of consumers liking the sample divided by the total number of consumers within that sample . In a similar manner, the percentage of consumers disliking and neither liking nor disliking the sample was calculated.Quality attributes such as soluble solids concentration, titratable acidity, soluble-solids-totitratable-acidity ratio and firmness were significantly different among cultivars and seasons . There was wide variability in soluble solids concentration among cultivars. ‘Reveille’ had the highest average value of the 2005 to 2007 seasons, followed by ‘Misty’ , ‘Emerald’ and ‘Star’ . ‘Jewel’ and ‘O’Neal’ had the lowest soluble solids concentration within this group. Titratable acidity within cultivars was less variable, and only ‘O’Neal’ had a significantly lower average value than the rest of the tested cultivars. Titratable acidity varied from 0.70% to 0.80% within this group with the exception of ‘O’Neal’. Cultivars segregated into three groups based on their soluble-solids-to-titratable-acidity ratio. Because of its low titratable acidity, ‘O’Neal’ had the highest ratio, while ‘Jewel’ had the lowest ratio due to its high titratable acidity. The rest of the cultivars formed an intermediate group in which the soluble-solids-to-titratableacidity ratio ranged from 17 to 20.3. ‘Jewel’ and ‘O’Neal’ also had the lowest firmness , while ‘Reveille’ and ‘Misty’ had the highest . ‘Emerald’ and ‘Star’ were significantly different than these two groups,25 liter pot plastic forming an intermediate group . Quality attributes were also significantly affected by the season. Soluble solids concentration across all cultivars was highest in 2007 and lowest in 2006, while titratable acidity was highest in 2006. Soluble-solids-to-titratableacidity ratio and firmness were significantly higher in 2007 than the other years. There was a significant interaction between cultivar and season for all these quality attributes . The lowest soluble solids concentration was 10.8% in 2006 for ‘O’Neal’ and the highest was 15.8% for ‘Reveille’ in 2007. During this 3-year period, all of the cultivars yielded soluble solids concentrations higher than 10%, which has been proposed as a minimum quality index for blueberries . Titratable acidity was similar among cultivars in these three seasons except for ‘O’Neal’ in 2007, which reached 0.3%, and ‘Jewel’ and ‘Emerald’ in 2006 with about 1.0%. ‘O’Neal’ and ‘Reveille’ had the highest soluble-solids-to-titratableacidity ratio, followed by the rest of the cultivars with ratios from 11.4 to 20.6. During this 3-year period, ‘Jewel’ and ‘O’Neal’ were the softest cultivars, and ‘Misty’ and ‘Reveille’ the firmest. Antioxidant capacity was significantly different among the cultivars but not between seasons .
There was a wide variability of TEAC within cultivars. ‘Misty’ had the highest average TEAC followed by ‘Reveille’ and ‘Emerald’ . ‘Star’ , ‘O’Neal’ and ‘Jewel’ had the lowest TEAC within this group. Like the rest of the quality attributes, there was a significant interaction between cultivars and seasons for antioxidant capacity . Storage of the six blueberry cultivars at 32°F for 15 days did not affect either antioxidant capacity or firmness, except for ‘O’Neal’ and ‘Misty’, whose firmness was reduced slightly but not significantly .Grapes are the most valuable fruit crop in the United States, valued at over $6.5 billion annually , but climate change is projected to reduce grape production and quality . Climate affects grape quality by impacting the concentration of sugars, organic acids, and secondary compounds . The climatic conditions producing the highest quality wine cause the berries to reach optimal ratios between sugar and acid concentrations and maximum concentrations of pigment, aroma, and flavor compounds simultaneously . Hot temperatures accelerate sugar accumulation, forcing growers to harvest earlier, before berries reach optimal flavor development, to avoid the high alcohol content and insipid wine flavor from excessive sugar to acid ratios . Harvest dates have shifted earlier historically, and climate models predict further acceleration of ripening . Growers can partly compensate through management practices, such as trimming canopies or using shade clothes to reduce the ratio of sugar supply to demand , though these practices are costly and increasingly ineffective in the face of climate change . Planting existing cultivars or developing new cultivars with slower sugar accumulation are promising alternative strategies to mitigate these climate change impacts, but these efforts have been hindered by uncertainty around the plant traits controlling sugar accumulation . Grape cultivars vary in berry maturation and sugar accumulation rates, and in their response to abiotic stress, but the main anatomical and physiological mechanisms driving these differences remain unknown . Multiple physiological processes influence berry sugar accumulation and its responses to climate, including photosynthesis, long-distance sugar transport, and local transport and metabolism in the berries . However, the relative importance of these factors in regulating sugar concentrations and fruit growth is debated . Photosynthetic responses to heat and water stress could impact cultivar differences in accumulation rates by affecting the sugar supply for ripening . Further, sugar is transported from the photosynthesizing leaves to the berries through the sugar-conducting vascular tissue – the phloem. At the onset of ripening , the berries significantly accelerate sugar accumulation by initiating active sugar unloading from the phloem, making the phloem the primary pathway for water and resource influx into the berries . The importance of phloem transport to ripening suggests that phloem traits could be important drivers of cultivar differences in sugar accumulation, and that modifying phloem traits to slow sugar accumulation under hot conditions could help mitigate the impacts of climate change on wine quality. However, the main traits controlling sugar accumulation in grape remain unclear . The rate of phloem transport is determined by both the hydraulic resistance to the flow of sugar sap, and the activity and kinetics of water and sugar transporters in the sources, sinks, and along the transport pathway . Modeling studies suggest that increasing the hydraulic resistance of the phloem reduces sugar export to the sinks . Therefore, selecting grape cultivars with lower total phloem conductance could decelerate sugar accumulation and improve the synchronization of sugar accumulation with flavor development under hotter conditions. However, a higher hydraulic resistance can make the phloem more susceptible to declines or even complete failures in transport under severe water stress . Thus, we expect cultivars that produce high-quality wine in hot, dry conditions to exhibit phloem hydraulic resistances that slow berry sugar accumulation while avoiding phloem failure. The phloem transport pathway is composed of individual sugar-conducting cells with porous end walls stacked to form conduits . The anatomy of the transport pathway, including the total cross-sectional area of sieve tubes in plant organs, lumen area of individual sieve tubes, and porosity of the sieve plates, significantly impacts pathway resistance .