Productive lines of research could aim to quantify individual differences in the positivity effect

Older adults with greatest engagement of rostral anterior cingulate, a prime regulator of amygdala activity , self-reported less unpleasantness for lowarousal negative stimuli. Together, these findings provide insight into the neural basis of agerelated changes in affective experience by which older adults preferentially enhance positive information, preferentially suppress negative information, or both. Given the recent reinvigoration of research establishing roles of the amygdala in reinforcement learning and decision-making , future studies should pay specific attention to the amygdala as a possible hub where emotional affective processes and dopaminergic reward-based processes intersect. The positivity effect may also influence decision-making through its modulation of medial temporal lobe memory systems. If positive information has privileged access to memory in aging , future choice behavior may be preferentially biased by positive experiences rather than negative experiences . There is some evidence to suggest that in the context of reward-based learning paradigms, older adults show intact episodic memory performance for the visual cues that predicted reward .

Intact subsequent memory for positive cues is particularly notable because it occurred despite reduced levels of reward-based probabilistic learning in the same subjects . How the strength of episodic memory for reward-related information is related to individual differences in the positivity effect is an open question, procona London container but represents one mechanism by which age-related changes in affective attention may shape decision-making. There are important boundary conditions that affect the occurrence and presentation of the positivity effect that are relevant for understanding how it may impact decision-making in aging. The positivity effect in aging is diminished in scenarios in which older adults are given explicit instructions on how to behave, and which stimuli to attend to . Therefore, it is more likely to impact performance on tasks that permit multiple strategies. Supporting this view, in dynamic learning environments that support exploratory behavior, older adults preferentially bias decision-making on recent positive feedback . The positivity effect is also sensitive to cognitive load. Specifically, enhancement of attention and memory for positively valenced information is absent or reversed relative to young adults when cognitive load is increased .

Therefore, the positivity effect is more likely to impact decision-making performance on tasks that support multiple strategies and are low in their computational requirements. To illustrate how the age-related positivity effect may influence decision-making performance, we use PST as an example. The PST, which does not have explicit instructions guiding choice strategies and is relatively low on working memory demands, is potentially sensitive to the age-related positivity effect. For young adults in which the positivity effect is largely absent, performance may be primarily predicted from measures of dopamine function. For example, D1 BPND would be positively correlated with choice selection to approach reward . For older adults in which the positivity effect is present, performance may be shifted from predictions based solely on measures of dopamine function . Reduced D1 BPND in aging would predict a general reduction in choice selection to approach reward relative to young participants. However, socioemotional selectivity accounts of PST performance in aging would predict greater choice selection driven by motivation to approach reward, especially if memory for the reward-predicting cue is particularly salient . Here, we suggest that the positivity effect can shift choice bias in directions that are opposite to what would be predicted based on dopamine effects alone. Such shifts may rely on the strength of the positivity effect within individuals, but nonetheless likely reflects a factor contributing to mixed and null effects in studies examining decision-making in aging.

Lines of future research should empirically test the possibility that dopaminergic decline and enhancement of positive affective processing counteract one another in laboratory-based decision-making tasks. This could be achieved by generating a normative measure of memory for positive, negative and neutral images in a large group of young adults from which to measure the magnitude of biases in individual older adults. Lang, Bradley, and Cuthbert have developed a catalogue of images with affective normative ratings, which could support these efforts . Assessment of the degree to which affective bias measures are related to variability in reward-based and punishment based decision-making would be an important contribution. Future studies could also test the extent to which individual differences in amygdala reactivity and hippocampal engagement during learning positive versus negative associations are predicted by individual differences in the positivity effect.There is an increasing number of innovative new studies examining the neural mechanisms underlying age-related changes in decision-making. The integration of in vivo imaging measures such as PET and neuromelanin-sensitive MR with computational models is a promising avenue for resolving the basic neurochemical drivers of individual differences in performance. This approach will be essential for disentangling age effects of dopamine from age effects of affective attentional bias that contribute to biases in decision-making. This approach will also be useful for defining the nature of changes in reward processing in psychological and psychiatric disorders associated with altered dopamine function and dys regulated affective processing such as schizophrenia, addiction, and depression. Critical steps for future research will be to determine the degree to which findings of laboratory-based assessments of decision-making and financial risk taking can be extended to real-world scenarios. To date, the relatively few cognitive neuroscience studies that have tested these relationships in aging have shown general agreement between performance on financial reward tasks and real-world financial measures . Future studies may focus on predicting the conditions under which older adults are vulnerable to suboptimal decision making. If changes in affective focus in aging partly counteract the detrimental effects of dopamine loss, older adults may be differentially impacted in decisions that occur in conditions in which the positivity effect is suppressed. For example, the positivity effect may be diminished for decisions made in high cognitive load conditions, where there is excessive or irrelevant information presented.Grapes are profitable fruit crop that are widely grown in the state of California, with an increasing need to accomplish cultural tasks mechanically , 2020; Kurtural and Fidelibus, 2021. However, there are many factors that are currently challenging the productivity, quality, and sustainability in wine grape vineyards, one being the increasingly significant global warming trend affecting California and the whole world , where more frequent heat waves and continued warming of air temperature imposes great threats to vineyard yield, berry and wine composition . Grape berry and wine quality are determined by the composition and concentration of secondary metabolites accumulated in berries. Flavonoids are the most abundant secondary metabolites and contribute to many quality determining traits, including color, mouthfeel, cut flower transport bucket and aging potential of wine . There are generally three classes of flavonoids in wine grapes, including anthocyanins, flavonols, and proanthocyanidins. Anthocyanins are responsible for grape berry and wine color, and they are sensitive to external environmental conditions when clusters are exposed to solar radiation and heat, with overexposure resulting in anthocyanin degradation . On the other hand, flavonols tend to be positively related to solar radiation . Solar radiation, especially UV-B, can often up-regulate flavonols’ biosynthesis, resulting in more flavonols accumulated in berry skins. However, excessive solar radiation received and heat accumulated in California would accelerate the degradation of not only anthocyanins, but also flavonols, which will cause a decline in the antioxidant capacity of resultant wine and a possible reduction in wine aging potential . In viticulture, trellis system selection is a critical aspect grower needs to consider when establishing a vineyard. An ideal trellis can promote grapevines’ photosynthetic capacity through optimizing light interception by the grapevine canopy.

Most importantly, a suitable trellis can optimize canopy microclimate by providing sufficient solar penetration into canopies since solar radiation is necessary to enhance the berry composition without excessive exposure of clusters to direct sunlight to avoid flavonoid degradation . There is evidence that grape clusters over-exposed to solar radiation are prone to occur with some of the widely used trellis systems. For example, vertical shoot position , a traditional and commonly used trellis system in viticulture production, has been found to produce canopies with high porosity which increases vulnerability of clusters to over-exposure , causing overly enhanced maturity and considerable degradation in berry anthocyanins . However, there is a lack of evaluations of the performance among various trellis systems in relation to the warming climate trends, and how their specific architectures contribute to variations in berry chemical profiles. In warm climates such as California, viticulture relies on irrigation for maintaining production, and previous work in the area showed that the application of different amounts of crop evapotranspiration can significantly modify polyphenolic and aromatic profiles in wine . Due to the increasingly frequent drought condition in many wine grape growing regions, recent studies have been focusing on the grapevine physiological and berry chemical responses towards specific levels of water deficits imposed by different ETc replacements, where water deficits are affective in manipulating grapevine water status, leaf gas exchange, components of yield, and berry composition: often, more water deficits applied to the grapevines would diminish photosynthetic capacities, but promote berry maturity . In some extremely drought conditions, however, severe water deficit might lower flavonoid concentration due to encouraged chemical degradation . Moreover, these effects resulted from different irrigation regimes can be modified by the canopy architecture as functions of trellis system since trellis systems can directly determine canopy sizes, hence resulting in different water demands from grapevines accordingly . On the other hand, over extraction of ground water to irrigate permanent crops have recently been questioned and legislation has been enacted in the state of California called the ‘Sustainable Groundwater Management Act’ . As a result, in some regions such as Napa Valley of California, grape growers will only be allowed to irrigate 120 mm per year. However, there is a lack of information on how the existing vineyards will cope with this water limitation in terms of irrigation scheduling. Therefore, the objectives of this study were to evaluate and compare 6 different trellis systems in combination with 3 irrigation strategies to understand the impact of trellis system and applied water amount on canopy architecture, grapevine physiology and berry composition. We hypothesized that traditional VSP systems would not be as efficient as the other trellis systems in terms of yield production and flavonoid accumulation, leading to greater berry flavonoid degradation and overall lower flavonoid concentrations.The second subset of 20 berries was used for the determination of skin flavonoids from each individual treatment-replicate. Skins were manually removed from the subset of 20 berries and subsequently lyophilized . After lyophilization, dry skin weights were recorded and then, the dried skins were ground into finepowder with a mixing mill . 50 mg of the freeze-dried berry skin powder were collected, and the skin flavonoids were extracted with 1 mL of methanol:water:7M hydrochloric acid to simultaneously determine flavonol and anthocyanin concentration and profile as previously described by MartınezLüscher et al. . The extracts were stored overnight in a refrigerator at 4°C. In the next day, the extracts were centrifuged at 30,000 g for 15 minutes, and the supernatants were separated from the solids and transferred into HPLC vials after being filtered by PTFE membrane filters . Then, the samples were injected into HPLC for chromatographic analysis.Anthocyanin and flavonol concentrations in berry skin tissues were analyzed with a reversed-phase HPLC with the use of two mobile phases: 5.5% formic acid in water and 5.5% formic acid in acetonitrile. The specific method used for this study required a C18 reversed-phase HPLC column for the analysis . The flow rate of the mobile phase was 0.5 mL min- 1 and the flow gradient started with 91.5% A with 8.5% B, 87% A with 13% B at 25 min, 82% A with 18% B at 35 min, 62% A with 38% B at 70 min, 50% A with 50% B at 70.01 min, 30% A with 70% B at 75 min, 91.5% A with 8.5% B from 75.01 min to 90 min. The column temperature was maintained at 25°C on both left and right sides of the column. All chromatographic solvents were of high-performance liquid chromatography grade, including acetonitrile, methanol, hydrochloric acid, formic acid. These solvents were purchased from Thermo-Fisher Scientific . Detection of flavonols and anthocyanins was recorded by the diode array detector at 365 and 520 nm, respectively. Investigated anthocyanin derivatives included di-hydroxylated forms: cyanidin and peonidin, and trihydroxylated forms: delphinidin, petunidin, and malvidin; investigated flavonols included a mono-hydroxylated form: kaempferol, di-hydroxylated forms: quercetin and isorhamnetin, and tri-hydroxylated forms: myricetin, laricitin, and syrigintin.